
(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Image Processing and Analysis

1 | P a g e

www.ijacsa.thesai.org

Sketch Recognition using Domain Classification

Vasudha Vashisht

Assistant Professor

Dept of Computer Sc & Engg

Lingaya’s University

Faridabad, Haryana, INDIA

Tanupriya Choudhury

Senior Lecturer

Dept of Computer Sc & Engg

Lingaya’s University

Faridabad, Haryana, INDIA

Dr. T. V. Prasad

Dean (R&D)

Lingaya’s University

Faridabad, Haryana, INDIA

Abstract— Conceptualizing away the sketch processing details in

a user interface will enable general users and domain experts to

create more complex sketches. There are many domains for

which sketch recognition systems are being developed. But, they

entail image-processing skill if they are to handle the details of

each domain, and also they are lengthy to build. The

implemented system’s goal is to enable user interface designers

and domain experts who may not have proficiency in sketch

recognition to be able to construct these sketch systems. This

sketch recognition system takes in rough sketches from user

drawn with the help of mouse as its input. It then recognizes the

sketch using segmentation and domain classification; the

properties of the user drawn sketch and segments are searched

heuristically in the domains and each figures of each domain, and

finally it shows its domain, the figure name and properties. It also

draws the sketch smoothly. The work is resulted through

extensive research and study of many existing image processing

and pattern matching algorithms.

Keywords- Sketch recognition; segmentation; domain

classification.

I. INTRODUCTION

As computers become an integral part of our lives, it
becomes increasingly important to make working with them

easier and more natural. It is visional to make human-computer

interaction as easy and as natural as human-human interaction.
As part of this vision, it is imperative that computers
understand forms of human-human interaction, such as
sketching. Computers should be able to understand the
information encoded in diagrams drawn by and for scientists
and engineers. A mechanical engineer, for example, can use a
hand-sketched diagram to depict his design to another engineer.
Sketching is a natural modality of human-computer interaction
for a variety of tasks [7].

In an attempt to combine the freedom provided by a paper
sketch with the powerful editing and processing capabilities of
an interpreted diagram, sketch recognition systems have been
developed for many domains, including Java GUI creation,
UML class diagrams, and mechanical engineering. Sketch
interfaces:

1) Interact more naturally than traditional mouse-and-palette

tools by allowing users to hand-sketch diagrams,

2) Can connect to a back-end system (such as a CAD tool) to

offer real-time design advice,

3) Recognize the shape as a whole to allow for more

powerful editing,

4) Beautify diagrams, removing mess and clutter, and

thereby

5) Notify the sketcher that the shapes have been recognized

correctly[6].

Previous sketch systems required users to learn a particular

stylized way of drawing, and used a feature-based recognition
algorithm, such as a Rubine or a GraffitiTM-type algorithm.
What these algorithms lose in natural interaction by requiring
the sketcher to draw in a particular style, they gain in speed and
accuracy. Rather than recognizing shapes, the algorithm
recognizes sketched gestures, where each gesture represents a
single shape. These sketched gestures focus more on how
something was drawn than on how the drawn object looks.
These recognition algorithms require that each gesture can be
drawn in a single stroke in the same manner (i.e., same
underlying stylistic features–stroke direction, speed, etc.) each
time. Each gesture has recognized based on a number of
features of that stroke, such as the initial angle of the stroke,
end angle, speed, number of crosses, etc. Because of these
requirements, the gesture representing the shape may look
different from the shape itself.

Further it is noted that :

 Human generated descriptions contained syntactic and

conceptual errors, and that

 It is more natural for a user to specify a shape by drawing

it than by editing text[7].

When working in a closed domain such as this one, the

computer knows exactly which conceptual uncertainties
remain, and which hypotheses need to be tested and confirmed.
The system builds a shape description language, using a
modification of the version spaces algorithm that handles
interrelated constraints.

To achieve the goals, the system is implemented for the
segmentation of the sketch. This system takes the input from
the user about the positions where the sketch has drawn and
then it process this information to divide the sketch into a
number of segments according to the position and the direction
of the sketch that has drawn by the user.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Image Processing and Analysis

2 | P a g e

www.ijacsa.thesai.org

To allow for natural drawing in proposed sketch
recognition systems, shapes are described and recognized in
terms of the subshapes that make up the shape and the
geometric relationships (constraints) between the subshapes.
Strokes are first broken down into a collection of primitive
shapes using a SEGMENTATION technique which operates
on the pixels and their orientation. A higher-level shape is then
recognized by searching for possible subshapes in the domain
and testing that the appropriate geometric constraints hold. The
geometric constraints confirm orientation, angles, relative size,
and relative location.

The remainder of this paper is organized as follows. Section
2 briefly reviews the basics of The User Interface Development
Framework with Domain specific information. Section 3 gives
the details of methodology by specifically talking about the
language for describing drawing and display, its building
blocks and limitations. Section 4 of the paper discusses the
overall recognition system, the algorithm used along with its
limitations and further research directions.

II. USER INTERFACE DEVELOPMENT

A. Domain-specific Information

When constructing a user interface, the domain-specific
information is able to be obtained by asking the following
questions [7]:

 What are the observable states to be recognized?

 How are these states to be recognized?

 What should happen when these states are recognized?

 How can we modify these states?

In sketch recognition user interfaces, the domain-specific

information is obtained by asking these questions:

 What shapes are in the domain?

 How is each shape recognized?

 What should happen after each shape is recognized?[8]

Many domain-specific events can occur after a shape is

recognized, but what is common in most domains is a change
in display. Sketchers often prefer to have a change in display to
confirm that their object was recognized correctly, as a form of
positive feedback. Changes in display may also function as a
way to remove clutter from the diagram. For example, the
system may replace several messy hand-drawn strokes with a
small representative image[4]. A change in the display may
vary from a simple change in color, a moderate change of
cleaning up the drawn strokes (e.g. straightening lines, joining
edges), to a more drastic change of replacing the strokes with
an entirely different image. Because display changes are so
popular and so common to most domains, so they are included
in the language.

This framework not only defines which shapes are in the
domain and how they are to be recognized in the domain, it
also recognizes the importance display in creating an effective
user interface. Developers of different domains may want the
same shape to be displayed differently: Compare a
brainstorming sketch interface that develop a web page layout
in which shapes may be left unrecognized, to a UML class

diagram sketch interface, where sketchers may want to replace
box-shaped classes with an index card-like image.

B. The Framework

Rather than build a separate recognition system for each
domain, it should be possible to build a single, domain-
independent recognition system that can be customized for
each domain. In this approach, building a sketch recognition
system for a new domain requires only writing a domain
description, which describes how shapes are drawn and
displayed. This description is then being transformed for use in
the domain independent recognition system. The inspiration for
such a framework stems from work in speech recognition and
compiler-compilers, which have used this approach with some
success.

In this framework, the recognition system translates the
domain description into a recognizer of hand drawn shapes.
This is analogous to work done on compiler-compilers, in
particular, visual language compiler-compilers. A visual
language compiler-compiler allows a user to specify a grammar
for a visual language, then compiles it into a recognizer which
can indicate whether an arrangement of icons is syntactically
valid. One main difference between that work and this one is
that the visual language compiler-compiler deals with the
arrangement of completed icons, whereas this work includes
three additional levels of reasoning:

 dealing with how strokes form primitive shapes (such as

lines and ellipses),

 how these primitive shapes form higher-level shapes or

icons, and

 how the higher-level shapes interact to form more

complicated shapes or less formal shape groups.

To build a new sketch interface:

1) A developer writes a domain description language
describing information specific to each domain, including:
what shapes are included in the domain, and how each
shape is to be recognized and displayed (providing
feedback to the user).

2) The developer will write a Java file that functions as an
interface between the existing back-end knowledge system
(e.g., a CAD tool) and the recognition system.

3) The User Interface customizable recognition system
translates the domain description language into shape
recognizers, editors, and exhibitors.

4) The UI customizable recognition system now functions as
a domain-specific sketch interface that recognizes and
displays the shapes in the domain, as specified in the
domain description. It also connects via the Java interface
(listed in Step 2) to an existing back-end system.

C. Implementation

The framework is implemented by building:

1) a symbolic language to describe domain-specific

information, including how shapes are drawn, displayed,

and edited in a domain; and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Image Processing and Analysis

3 | P a g e

www.ijacsa.thesai.org

2) a customizable, multi-domain recognition system that

transforms a domain description language into

recognizers, and exhibitors to produce a domain-specific

user interface

III. A PERCEPTUAL LANGUAGE FOR DESCRIBING DRAWING

AND DISPLAY IN RECOGNITION

In order to generate a sketch interface for a particular
domain, the system needs domain-specific information,
indicating what shapes are in the domain and how each shape
in the domain is to be recognized and displayed. Domain
information should provide a high level of abstraction to reduce
the effort and the amount of sketch recognition knowledge that
is needed by the developer. The domain information should be
accessible, understandable, intuitive, and easy for the developer
to specify [7].

A shape description needs to be able to describe a
generalized instance of the shape, describing all acceptable
variations, so that the recognition system can be properly
recognized all allowable variations. A shape description should
not include stylized mannerisms (such as the number, order,
direction, or speed of the strokes used) [8]that would not be
presented in other sketchers’ drawings of a shape, as it would
require all sketchers to draw in the same stylistic manner as the
developer in order for their sketches to be recognized. Thus, it
has chosen to describe shapes according to their user-
independent visual properties.

 A perceptual language for describing shapes is being
developed, for use to specify the necessary domain
information. The language consists of predefined primitive
shapes, constraints, and display methods. Shape descriptions
primarily concern shape, but may include information such as
stroke order or stroke direction, if that information would prove
useful to the recognition process. The specification of editing
behavior allows the system to determine when a pen gesture is
intended to indicate editing rather than a stroke, and what to do
in response. Display information indicates what to display after
strokes are recognized.

The difficulty in creating such a language involves ensuring
that the language is broad enough to support a wide range of
domains, yet narrow enough to remain comprehensible and
intuitive in terms of vocabulary. To achieve sufficient
broadness, it was used to describe several hundred shapes in a
variety of domains. Relevant figure shows a sample of the
shapes described. To achieve sufficient narrowness, only
perceptually-important constraints are chosen.

The language also has a number of higher-level features
that simplify the task of creating a domain description. Shapes
can be built hierarchically. Shapes can extend abstract shapes,
which describe shared shape properties, making it unnecessary
for the application designer to define these properties numerous
times. As an example, several shapes may share the same
editing properties. Shapes with a variable number of
components, such as poly-lines or polygons (which have a
variable number of lines), can be described by specifying the
minimum and maximum number of components (e.g., lines)
allowed. Contextual information from neighboring shapes also
can be used to improve recognition by defining shape groups;

for instance, contextual information can distinguish a pin joint
from a circular body in mechanical engineering. Shape group
information also can be used to perform chain reaction editing,
such as having the movement of one shape cause the
movement of another.

IV. THE RECOGNITION SYSTEM

Recognition consists of two stages:

 stroke processing and & segmentation

 shape recognition using domain classification

During stroke processing, each stroke is broken down into a
collection of primitive shapes, including line, arc, circle,
ellipse, curve, point, and spiral.

During shape recognition, the properties of the strokes and
shape are searched for heuristically in each domain. If a stroke
or shape has multiple interpretations, all interpretations are
added to the pool of recognized shapes, but a single
interpretation is chosen for display. The system chooses to
display the interpretation that is composed of the largest
number of primitive shapes or the first found interpretation, in
the case of interpretations composed of the same number of
primitive shapes.

A. Segmentation

Segmentation refers to the process of partitioning a digital
image or sketch into multiple segments (sets of pixels, also
known as super pixels). The goal of segmentation is to simplify
and/or change the representation of an image into something
that is more meaningful and easier to analyze. Image or sketch
segmentation is typically used to locate objects and boundaries
(lines, curves, etc.) in images or sketches. More precisely,
image segmentation is the process of assigning a label to every
pixel in an image such that pixels with the same label share
certain visual characteristics. The result of image segmentation
is a set of segments that collectively cover the entire image, or
a set of contours extracted from the image. Each of the pixels
in a region is similar with respect to some characteristic or
computed property, such as color, intensity, or texture.
Adjacent regions are significantly different with respect to the
same characteristic(s).

Several general-purpose algorithms and techniques have
been developed for image segmentation. Since there is no
general solution to the image segmentation problem, these
techniques often have to be combined with domain knowledge
in order to effectively solve an image segmentation problem for
a problem domain.

The existing algorithms like the Canny Algorithm have the
disadvantage of working only over the frequency values that
are present in the input matrix and have a uniform threshold
value. The other algorithms works on the images, that are
presented as the input, that is they check for the color
frequency in the image, and then segment that image on the
basis of that. Not to forget as the main disadvantage of the
current segmentation algorithms is the complex computations
they involve. Whereas the algorithm that is presented in this
document works on the direction in which the sketch is
proceeding at the run time. This direction is determined by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Image Processing and Analysis

4 | P a g e

www.ijacsa.thesai.org

taking a pixel set (a set of 5 pixels) and processing those pixels
to determine the direction. This direction determines the
position or the pixel where segmentation needs to be done.

This Segmentation Algorithm is based upon the pixels or
rather the pixel set (set of 5 pixels). The user draws a sketch on
the console and its pixel values that is the x-coordinate and y-
coordinate values (abscissa and ordinate values) are stored in
the database. All the further working will be done by taking
these pixel values from the database. The whole of the
segmentation algorithm is divided into 8 phases. These phases
are as mentioned below.

1) Draw Sketch: The user is given with a console on
which he can draw any sketch that he requires to
segment. He can draw any shape or figure with various
input devices like a mouse or a light pen etc.

2) Record Pixels: When the user is drawing the sketch the
system simultaneously records all the pixel values i.e.
the abscissa and ordinate values of the drawn sketch,
and stores these values into the database. When the
input device is pressed or down/clicked, goes over any
pixel in the consol or the canvas, highlights that pixel
and the value of that pixel is stored in the database.
This whole process has done at the run time, as soon as
that specific pixel is highlighted and does not wait for
the user to complete the sketch, thus saving processing
time.

3) Compare adjacent pixels: After the value of the
highlighted pixel is stored in the database, the system
fetches these values and compares all the adjacent pixel
values. This comparison is done so as to determine the
flow or the direction of the sketch that is the direction
in which the sketch is moving.

In order to get the direction there are 8 different categories.
It means that the direction of two adjacent pixels can be one of
the 8 categories. These cases are described below. Let us
suppose the 2 pixels are P1 and P2, and there coordinate values
are x1, y1 and x2, y2 respectively.

TABLE 1: Segmentation algorithm’s 8 cases

Case Sketch is moving x y

1 to the positive X direction keeping Y

value as constant

x2 – x1 > 0 y2 – y1 = 0

2 in the negative X direction keeping Y

value as constant

x2 – x1 < 0 y2 – y1 = 0

3 in positive Y direction keeping the X

value as constant

x2 – x1 = 0 y2 – y1 > 0

4 in negative Y direction keeping X

value as constant

x2 – x1 = 0 y2 – y1 < 0

5 in positive X direction and negative Y

direction

x2 – x1 > 0 y2 – y1 < 0

6 in positive X direction and positive Y

direction

x2 – x1 > 0 y2 – y1 > 0

Case Sketch is moving x y

7 moving in negative X direction and

positive Y direction

x2 – x1 < 0 y2 – y1 > 0

8 moving in negative X direction and

negative Y direction

x2 – x1 < 0 y2 – y1 < 0

Figure 1: The various directions in which the sketch can flow and these are
divided into 8 cases

B. Domain Classification

The Sketch is recognized using Domain Classification by
the method shown here. The properties of the user drawn
sketch and segments are searched heuristically in the domains
and each figures of each domain. The properties of the figure in
the domain and the user sketch are mapped, and finally the
sketch is recognized.

Figure 2: Various domains used by the system

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Image Processing and Analysis

5 | P a g e

www.ijacsa.thesai.org

Figure 3: Domain Classification

C. Experimental Results

If the user draws numerous strokes rapidly, the system can
slow down because there is a steady amount of time necessary
to preprocess every stroke. The running time of the recognition
system is analyzed and determined that, with many
unrecognized shapes on the amount of time in the number of
shapes on the screen to compute the property values and a
logarithmic amount time to insert in to the appropriate data
structure. A very small portion of time was used to do the
actual recognition, even though the last portion is exponential
in the number of strokes on the screen. As a result of indexing,
the recognition portion takes a small amount of time, with little
to no constraint calculation, as the system was only performing
list comparisons. As a result, the system still reacts in what can
be considered close to real-time, even with 186 shapes on the
screen.

D. Flowchart

1) First Module: Taking the Input
This module has the designing and coding of the user

interface. The user interface is a panel divided into frames and
Java AWT elements such as buttons, textboxes, divider etc.
This interface takes input drawn by mouse by the user which is
a rough sketch. The input is recorded and stored in the database
as pixel values with the x coordinate and y coordinate values of
the highlighted pixel.

Figure 4: Flowchart for sketch recognition

START

Take input from user: a rough

hand drawn sketch

Record and store pixel values of all the highlighted

pixels in the database

Segment the sketch using the segmentation module

Print the de-segmented sketch on

the screen by neatly drawing the

rough sketch

Store the properties of the re-drawn sketch in the

database and search for the same properties of

figures in separate domains

Search heuristically in each domain for the figure

by matching the properties

Print the name of the domain for the

sketch and label the figures and

display the properties (like angle)

END

Properties of Sketch

and its Segments

Domain 1:

Mathematics

Domain 2:

Flowchart

Fig 1: Angle &

Properties

Fig 2: Plus Sign &

Properties

. . .

. . .

. . .

And

so on

Fig 1: Rectangle

& Properties

Fig 2: Arrow

& Properties

. . .

. . .

. . .

And

so on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Image Processing and Analysis

6 | P a g e

www.ijacsa.thesai.org

Figure 5: Hand drawn input

Figure 6: Processed segmented sketch

2) Second Module: Recording the Input
The storage of abscissa and ordinate value of the

highlighted pixels starts immediately when the user clicks and
drags the mouse on the interface to draw the sketch. Thus, the
processing starts as user starts to draw and does not wait for the
user to complete the sketch; saving the waiting time for the
user.

3) Third Module: Segmenting the Sketch
This was one of the modules which were tough to design as

the previous work done on sketch recognition does not disclose
much on the segmentation algorithm.

This module also includes storing the properties of the
sketch drawn and segmented so that these can be used further
in recognizing the sketch.

4) Fourth Module: Searching the sketch in the domains

and the figures
After segmentation is completed and the segmentation

points are stored, the sketch has to be recognized. Domains are
defined, such as mathematics, flowcharts, etc. These domains
include properties of figures which lie in those respective
domains.

5) Sn

6) Fifth Module: Re-Drawing the Recognized figure
After the sketch is recognized the de-segmented figure is

re-drawn neatly with straight lines and proper curves. These
replace the roughly drawn sketches in the user interface frame.
This is done by looking at the properties of the figure such as
distances and angles.

This module also includes displaying the domain name and
the figure name if recognized. It may also display properties of
the figure such as the angle measurements if the recognized
figure is an angle. This module comes only if the sketch is
recognized, if it is not recognized both domain and figure are
undefined and the sketch is not re-drawn again.

Screen Shots:

Figure 7: Basic User Interface

The Basic User Interface consists of 3 parts:
 input display

 output display

 information display

In the input display part, the user draws the sketch. In the

output display the recognized sketch is displayed. Whereas in
the information display shows the information like in which
domain the sketch lies and what is the name of that sketch.

Following figure represents a sketch that is drawn by the
user. When the user press the detect button, the system does its
processing and generates an output.

Figure 8: User Interface with input sketch and recognized output sketch as a

Rectangle

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Image Processing and Analysis

7 | P a g e

www.ijacsa.thesai.org

This figure represents an input as submitted by the user in
the previous figure. Along with that there is the recognized
figure with proper orientation. Also there is the domain i.e.
“Flowchart” in which this sketch lies and the name of this
sketch is “Rectangle”.

Figure 9: User Interface with input sketchs and recognized output sketchs in a

single window

Figure 9 is a special figure. In this figure, it is represented
that the user can draw any number of sketches in the input
space and when he presses the Detect button, all of the input
sketches are detected. Also for each input sketch a correct
recognized sketch is displayed in the output space.

Figure 10: User Interface with input sketch only because this sketch is not

recognized by the system.

The figure 10 represents a sketch that is drawn by the user.
When the user press the detect button, the system does its
processing and generates an output. In this figure no sketch is

recognized because the sketch which the user has drawn
doesn’t present in any of the domains. Thus the system returns
a blank output space and domain and sketch value as
“Undefined”.

Figure11: it shows the database table Sketch1

The figure 11 shows the values that are contained by the
dynamically created table Sketch1. This table consists of the
field ID, X and Y co-ordinates.

Figure 12: it shows the database table Sketch1CAT

The figure 12 shows the values that are contained by the
dynamically created table Sketch1CAT. This table contains the
fields ID and the Cat which stores the category value.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Image Processing and Analysis

8 | P a g e

www.ijacsa.thesai.org

Figure 13: it shows the database table Sketch1CATM

Figure 13 shows the values that are contained by the
dynamically created table Sketch1CATM. This table
overwrites the field of Category in a pixelset.

Figure 14: it shows the database table Sketch1CATM

Figure 14 shows the values that are contained by the
dynamically created table Sketch1Segment. This table consists
of all the values of the segments i.e. the segment starting and
ending point along with the segment number.

V. MERITS AND DEMERITS

A. Merits

 This system can be used for multiple sketches at the same

time.

 Segmentation Approach used removes the need of use any

filtration algorithm, making it faster.

 Has an easy to use user interface.

 This interface can be connected to other applications

which need recognition modules.

 It is platform independent.

B. Demerits

 Currently the system cannot be used for figures with

curves, however there is an algorithm designed by us

which can be implemented further.

VI. FUTURE WORK

It can be used to develop:

 Handwriting Recognition Systems.

 Fast Flowchart Designers.

 Other Architecture Designers.

 Higher accessibility tools for users to use the Interface

more efficiently. (for OS etc.)

 Same approach can be used to implement similar projects

for touch screen applications on various new upcoming

OS(s) like nokia rim,apply iphone,windows mobile

android,google garnet,palm web bada os , maemo os,

meego os etc.

VII CONCLUSION

The over-arching goal of this work is to make human-
computer interaction as natural as human-human interaction.
Part of this vision is to have computers understand a variety of
forms of interaction that are commonly used between people,
such as sketching. Computers should, for instance, be able to
recognize the information encoded in diagrams drawn by
humans, including mechanical engineering diagrams.

Ordinary systems offer one the freedom to sketch naturally,
but it does not provide the benefits of a computer-interpreted
diagram, such as more powerful design advice or simulation
abilities. Sketch recognition systems bridge that gap by
allowing users to hand-sketch their diagrams, while
recognizing and interpreting these diagrams to provide the
power of a computer-understood diagram. Many sketch
systems have been built for a particular domain. Unfortunately,
these sketch systems may not fill the needs of the sketcher, and
building these sketch systems requires not only a great deal of
time and effort, but also an expertise in sketch recognition at a
signal level [7]. Thus, the barrier to building a sketch system is
high. This researcher wants to empower user interface
developers, including designers and educators, who are not
experts in sketch recognition, to be able to build sketch
recognition user interfaces for use in designing, brainstorming,
and teaching.

In response to this need, the framework is developed for
facilitating User Interface development. As part of the
framework, this project has developed a perception-based
sketching language for describing shapes, and a customizable
recognition system that automatically generates a sketch
recognition system from these shapes. In order to allow
drawing freedom, shapes are recognized by what they look
like, rather than by how they are drawn. This language provides
the ability to describe how shapes in a domain are drawn and
displayed within the user interface.

Because humans are naturally skilled at recognizing shapes,
the system uses human perceptual rules as a guide for the
constraints in the language and for recognition.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Special Issue on Image Processing and Analysis

9 | P a g e

www.ijacsa.thesai.org

The sketch recognition system’s accuracy can be improved by

 Combining user-dependent (feature-based) recognition

with user-independent (geometric) recognition techniques

 Incorporating global and local context into the recognition

system, including geometric, perceptual, functional,

multi-modal, similarity, and common sense context.

REFERENCES

[1] Christine Alvarado. Sketch Recognition User Interfaces: Guidelines for
Design and Development. In Making Pen-Based Interaction Intelligent
and Natural, pp.8-14. Menlo Park, California, October 21-24 2004.

[2] Hammond. T.M., and Davis. R. (2005), “LADDER, a sketching
language for user interface developers”, Computers & Graphics 29.

[3] Hammond, T.M., and Davis, R. (2002). Tahuti:a geometrical sketch
recognition system for uml class diagrams. AAAI Spring Symposium on
Sketch Understanding

[4] Jacob Eisenstein. Book Review: Gesture in Human-Computer
Interaction and Simulation. Gesture 7(1). 2007.

[5] Landay, J. A., and Myers, B. A. 2001. Sketching interfaces: Toward
more human interface design. IEEE Computer.

[6] Liao. S.Z., Wang X.J., and Liang. J. “An incremental approach to sketch
recognition”. Proceedings of the 4th International Conference on
Machine Learning and Cybernetics, Guangzhou, 18-21 August 2005.

[7] Hammond. T.M., LADDER: A Perceptually-based Language to
Simplify Sketch Recognition User Interface Development. Ph.D Thesis
for Massachusetts Institute of Technology. Cambridge, MA, January
2007.

[8] Hammond. T.M., and Davis. R.. LADDER: A Sketch Recognition
Language. In MIT Computer Science and Artificial Intelligence
Laboratory Annual Research Abstract. September 2004.

[9] Bharat Aggarwal, Vishi Segal, Disha Jaggi “Sketch Recognition”,
unpublished.

[10] Hammond, Brandon Paulson, “ Towards a framework for truly natural
Low level Sketch Recognition’

AUTHORS’ PROFILE

Vasudha Vashisht received her bachelor’s and master’s degree in Computer
Science from M.D. University, Haryana, India. She has 6 years of experience
in teaching. Currently, she is working as a Assistant Professor in the Dept. of
Computer Sc. & Engg. at Lingaya’s University, Faridabad, Haryana, India.
She has authored 10 papers and her areas of interests include artificial
intelligence, Cognitive Science, Brain Computer Interface, Image & Signal
Processing. Currently she is pursuing her doctoral degree in Computer Science
& Engg. She is a member of reputed bodies like IEEE, International
Association of Engineers, International Neural Network Society, etc.

Tanupriya Choudhury received his bachelor’s degree in CSE from West
Bengal University of Technology, Kolkata, India, and master’s Degree in CSE
from Dr. M.G.R University, Chennai, India. He has one year experience in
teaching. Currently he is working as a Senior Lecturer in dept. of CSE at
Lingaya’s University, Faridabad, India. His areas of interests include Cloud
Computing, Network Security, Data mining and Warehousing, Image
processing etc.

Dr. T. V. Prasad received his master’s degree in Computer Science from
Nagarjuna University, AP India and a doctoral degree from Jamia Milia
Islamia University, New Delhi, India. With over 16 years of academic and
Professional experience, he has a deep interest in planning and executing
major IT projects, with deep interest in research in CS/IT and bioinformatics.
He is the author of 60+ journal/conference/book chapter/white paper
publications.He has also held respectable positions such as Deputy Director
with Bureau of Indian Standards, New Delhi.His areas of interest include
bioinformatics, artificial intelligence, consciousness studies, computer
organization and architecture. He is a member of reputed bodies like ISRS,
CSI, APBioNet, etc.

